Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 55(14): 9469-9478, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34029059

RESUMEN

Xenobiotic chemical emissions from the informal electronic waste recycling (EW) sector are emerging problem for developing countries, with scale and impacts that are yet to be evaluated. We report an intensive polyurethane foam disk passive air sampling study in four megacities in India to investigate atmospheric organic pollutants along five transects viz., EW, information technology (IT), industrial, residential, and dumpsites. Intraurban emission sources were estimated and attributed by trajectory modeling and positive matrix factorization (PMF). ∑17PCDD/Fs, ∑25PCBs, ∑7plasticizers, and ∑15PAHs concentrations ranged from 3.1 to 26 pg/m3 (14 ± 7; Avg ± SD), 0.5-52 ng/m3 (9 ± 12); 7.5-520 ng/m3, (63 ± 107) and 6-33 ng/m3 (17 ± 6), respectively. EW contributed 45% of total PCB concentrations in this study and was evidenced as a major factor by PMF. The dominance of dioxin-like PCBs (dl-PCBs), particularly PCB-126, reflects combustion as the possible primary emission source. PCDD/Fs, PCBs and plasticizers were consistently highest at EW transect, while PAHs were maximum in industrial transect followed by EW. Concentrations of marker plasticizers (DnBP and DEHP) released during EW activities were significantly higher (p < 0.05) in Bangalore than in other cities. Toxic equivalents (TEQs) due to dl-PCBs was maximum in the EW transect and PCB-126 was the major contributor. For both youth and adult, the highest estimated inhalation risks for dl-PCBs and plasticizers were seen at the EW transect in Bangalore, followed by Chennai and New Delhi.


Asunto(s)
Contaminantes Atmosféricos , Residuos Electrónicos , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Adipatos , Contaminantes Atmosféricos/análisis , Ciudades , Dibenzofuranos , Dibenzofuranos Policlorados/análisis , Residuos Electrónicos/análisis , Monitoreo del Ambiente , India , Bifenilos Policlorados/análisis , Dibenzodioxinas Policloradas/análisis
2.
Environ Sci Process Impacts ; 20(1): 210-219, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29094747

RESUMEN

Passive air samplers equipped with polyurethane foam (PUF-PAS) are frequently used to measure persistent organic pollutants (POPs) in ambient air. Here we present and evaluate a method to determine sampling rates (RS), and the effective sampling volume (Veff), for gas-phase chemical compounds captured by a PUF-PAS sampler deployed anywhere in the world. The method uses a mathematical model that requires only publicly available hourly meteorological data, physical-chemical properties of the target compound, and the deployment dates. The predicted RS is calibrated from sampling rates determined from 5 depuration compounds (13C PCB-9, 13C PCB-15, 13C PCB-32, PCB-30, and d6-γ-HCH) injected in 82 samples from 24 sites deployed by the Global Atmospheric Passive Sampling (GAPS) network around the world. The dimensionless fitting parameter, gamma, was found to be constant at 0.267 when implementing the Integrated Surface Database (ISD) weather observations and 0.315 using the Modern Era Retrospective-Analysis for Research and Applications (MERRA) weather dataset. The model provided acceptable agreement between modelled and depuration determined sampling rates, with 13C PCB-9, 13C PCB-32, and d6-γ-HCH having mean percent bias near zero (±6%) for both weather datasets (ISD and MERRA). The model provides inexpensive and reliable PUF-PAS gas-phase RS and Veff when depuration compounds produce unusual or suspect results and for sites where the use of depuration compounds is impractical, such as sites experiencing low average wind speeds, very cold temperatures, or remote locations.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Modelos Teóricos , Poliuretanos/química , Calibración , Monitoreo del Ambiente/instrumentación , Hexaclorociclohexano/análisis , Límite de Detección , Bifenilos Policlorados/análisis , Estudios Retrospectivos , Viento
3.
PeerJ ; 5: e2838, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28070462

RESUMEN

A freshwater "mussel mortality threshold" was explored as a function of porewater ammonium (NH4+) concentration, mussel biomass, and total nitrogen (N) utilizing a numerical model calibrated with data from mesocosms with and without mussels. A mortality threshold of 2 mg-N L-1 porewater NH4+ was selected based on a study that estimated 100% mortality of juvenile Lampsilis mussels exposed to 1.9 mg-N L-1 NH4+ in equilibrium with 0.18 mg-N L-1 NH3. At the highest simulated mussel biomass (560 g m-2) and the lowest simulated influent water "food" concentration (0.1 mg-N L-1), the porewater NH4+ concentration after a 2,160 h timespan without mussels was 0.5 mg-N L-1 compared to 2.25 mg-N L-1 with mussels. Continuing these simulations while varying mussel biomass and N content yielded a mortality threshold contour that was essentially linear which contradicted the non-linear and non-monotonic relationship suggested by Strayer (2014). Our model suggests that mussels spatially focus nutrients from the overlying water to the sediments as evidenced by elevated porewater NH4+ in mesocosms with mussels. However, our previous work and the model utilized here show elevated concentrations of nitrite and nitrate in overlying waters as an indirect consequence of mussel activity. Even when the simulated overlying water food availability was quite low, the mortality threshold was reached at a mussel biomass of about 480 g m-2. At a food concentration of 10 mg-N L-1, the mortality threshold was reached at a biomass of about 250 g m-2. Our model suggests the mortality threshold for juvenile Lampsilis species could be exceeded at low mussel biomass if exposed for even a short time to the highly elevated total N loadings endemic to the agricultural Midwest.

4.
Atmos Environ (1994) ; 122: 791-798, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26594127

RESUMEN

Indiana Harbor and Ship Canal (IHSC) in East Chicago is an industrial waterway on Lake Michigan and a source of PCBs to Lake Michigan and the overlying air. We hypothesized that IHSC is an important source of airborne PCBs to surrounding communities. We used AERMOD to model hourly PCB concentrations, utilizing emission fluxes from a prior study and hourly meteorology provided by the State of Indiana. We also assessed dispersion using hourly observed meteorology from a local airport and high resolution profiles simulated by the Weather Research and Forecasting model. We found that emissions from IHSC waters contributed about 15% of the observed ΣPCB concentrations close to IHSC when compared on an hourly basis and about 10% of observed annual concentrations at a nearby school. Concentrations at the school due to emissions from IHSC ranged from 0 to 18,000 pg m-3, up to 20 times higher than observed background levels, with an annual geometric mean (GSD) of 19 (31) pg m-3. Our findings indicate that IHSC is an important source of PCBs to East Chicago, but not the only source. Four observed enriched PCB3 samples suggest a nearby non-Aroclor source.

5.
Environ Sci Technol ; 49(23): 13878-88, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26440379

RESUMEN

Urban areas are important regional sources of airborne polychlorinated biphenyls (PCBs) and population-scale airborne exposure, yet a comprehensive bottom-up source inventory of PCB emissions has never been quantified at urban scales in the United States. Here we report a comprehensive parcel level inventory of PCB stocks and emissions for Chicago, Illinois, developed with a transferable method from publicly available data. Chicago's legacy stocks hold 276 ± 147 tonnes ∑PCBs, with 0.2 tonnes added annually. Transformers and building sealants represent the largest legacy categories at 250 and 20 tonnes, respectively. From these stocks, annual emissions rates of 203 kg for ∑PCBs and 3 kg for PCB 11 explain observed concentrations in Chicago air. Sewage sludge drying contributes 25% to emissions, soils 31%, and transformers 21%. Known contaminated sites account for <1% of stocks and 17% of emissions to air. Paint is responsible for 0.00001% of stocks but up to 7% of ∑PCBs emissions. Stocks and emissions are highly concentrated and not correlated with population density or demographics at the neighborhood scale. Results suggest that strategies to further reduce exposure and ecosystem deposition must focus on the largest emissions sources rather than the most contaminated sites or the largest closed source legacy stocks.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , Bifenilos Policlorados/análisis , Contaminantes Atmosféricos/efectos adversos , Chicago , Monitoreo del Ambiente/métodos , Humanos , Bifenilos Policlorados/efectos adversos , Aguas del Alcantarillado , Contaminantes del Suelo/análisis , Instalaciones de Eliminación de Residuos
6.
Environ Sci Technol ; 49(9): 5371-9, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25874663

RESUMEN

Atmospheric concentrations of flame retardants, polycyclic aromatic hydrocarbons, and pesticides were measured using passive air samplers equipped with polyurethane foam disks to find spatial information in and around Chicago, Illinois. Samplers were deployed around the greater Chicago area for intervals of 6 weeks from 2012 to 2013 (inclusive). Volumes were calculated using passive sampling theory and were based on meteorology and the compounds' octanol-air partition coefficients. Geometric mean concentrations of total polybrominated diphenyl ethers ranged from 11 to 150 pg/m3, and tributyl phosphate, tris(2-chloroethyl)phosphate, tris(1-chloro-2-propyl)phosphate, and triphenyl phosphate concentrations were in the ranges of 54-290, 32-340, 130-580, and 170-580 pg/m3, respectively. The summed concentrations of 16 PAHs ranged from 8700 to 52,000 pg/m3 over the sampling area, and DDT, chlordane, and endosulfan concentrations were in the ranges of 2.7-9.9, 8.2-66, and 16-85 pg/m3, respectively. Sampling sites were split into two groups depending on their distances from the Illinois Institute of Technology campus in Chicago. With a few exceptions, the concentrations of most compound groups in the city's center were the same or slightly higher than those measured >45 km away. The data also showed that the concentrations measured with a passive atmospheric sampling system are in good agreement with those measured with an active, high-volume, sampling system. Given that the sampling times are different (passive, 43 days; active, 1 day), and that both of these measured concentrations cover about 5 orders of magnitude, the agreement between these passive and active sampling methods is excellent.


Asunto(s)
Atmósfera/química , Monitoreo del Ambiente/métodos , Retardadores de Llama/análisis , Plaguicidas/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Chicago , Ésteres/análisis , Geografía , Éteres Difenilos Halogenados/análisis , Illinois
7.
Atmos Environ (1994) ; 104: 195-204, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25663800

RESUMEN

In summer 2012, a landfill liner comprising an estimated 1.3 million shredded tires burned in Iowa City, Iowa. During the fire, continuous monitoring and laboratory measurements were used to characterize the gaseous and particulate emissions and to provide new insights into the qualitative nature of the smoke and the quantity of pollutants emitted. Significant enrichments in ambient concentrations of CO, CO2, SO2, particle number (PN), fine particulate (PM2.5) mass, elemental carbon (EC), and polycyclic aromatic hydrocarbons (PAH) were observed. For the first time, PM2.5 from tire combustion was shown to contain PAH with nitrogen heteroatoms (a.k.a. azaarenes) and picene, a compound previously suggested to be unique to coal-burning. Despite prior laboratory studies' findings, metals used in manufacturing tires (i.e. Zn, Pb, Fe) were not detected in coarse particulate matter (PM10) at a distance of 4.2 km downwind. Ambient measurements were used to derive the first in situ fuel-based emission factors (EF) for the uncontrolled open burning of tires, revealing substantial emissions of SO2 (7.1 g kg-1), particle number (3.5×1016 kg-1), PM2.5 (5.3 g kg-1), EC (2.37 g kg-1), and 19 individual PAH (totaling 56 mg kg-1). A large degree of variability was observed in day-to-day EF, reflecting a range of flaming and smoldering conditions of the large-scale fire, for which the modified combustion efficiency ranged from 0.85-0.98. Recommendations for future research on this under-characterized source are also provided.

8.
Atmos Environ (1994) ; 104: 273-283, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25624787

RESUMEN

The Iowa City Landfill in eastern Iowa, United States, experienced a fire lasting 18 days in 2012, in which a drainage layer of over 1 million shredded tires burned, generating smoke that impacted the surrounding metropolitan area of 130,000 people. This emergency required air monitoring, risk assessment, dispersion modeling, and public notification. This paper quantifies the impact of the fire on local air quality and proposes a monitoring approach and an Air Quality Index (AQI) for use in future tire fires and other urban fires. Individual fire pollutants are ranked for acute and cancer relative risks using hazard ratios, with the highest acute hazard ratios attributed to SO2, particulate matter, and aldehydes. Using a dispersion model in conjunction with the new AQI, we estimate that smoke concentrations reached unhealthy outdoor levels for sensitive groups out to distances of 3.1 km and 18 km at 24-h and 1-h average times, respectively. Modeled and measured concentrations of PM2.5 from smoke and other compounds such as VOCs and benzo[a]pyrene are presented at a range of distances and averaging times, and the corresponding cancer risks are discussed. Through reflection on the air quality response to the event, consideration of cancer and acute risks, and comparison to other tire fires, we recommend that all landfills with shredded tire liners plan for hazmat fire emergencies. A companion paper presents emission factors and detailed smoke characterization.

9.
Environ Sci Technol ; 47(15): 8591-8, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23837599

RESUMEN

Passive air samplers (PAS) including polyurethane foam (PUF) are widely deployed as an inexpensive and practical way to sample semivolatile pollutants. However, concentration estimates from PAS rely on constant empirical mass transfer rates, which add unquantified uncertainties to concentrations. Here we present a method for modeling hourly sampling rates for semivolatile compounds from hourly meteorology using first-principle chemistry, physics, and fluid dynamics, calibrated from depuration experiments. This approach quantifies and explains observed effects of meteorology on variability in compound-specific sampling rates and analyte concentrations, simulates nonlinear PUF uptake, and recovers synthetic hourly concentrations at a reference temperature. Sampling rates are evaluated for polychlorinated biphenyl congeners at a network of Harner model samplers in Chicago, IL, during 2008, finding simulated average sampling rates within analytical uncertainty of those determined from loss of depuration compounds and confirming quasilinear uptake. Results indicate hourly, daily, and interannual variability in sampling rates, sensitivity to temporal resolution in meteorology, and predictable volatility-based relationships between congeners. We quantify the importance of each simulated process to sampling rates and mass transfer and assess uncertainty contributed by advection, molecular diffusion, volatilization, and flow regime within the PAS, finding that PAS chamber temperature contributes the greatest variability to total process uncertainty (7.3%).


Asunto(s)
Contaminantes Atmosféricos/análisis , Poliuretanos/química , Modelos Teóricos , Volatilización
10.
Proc Natl Acad Sci U S A ; 109(30): 11939-43, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22778436

RESUMEN

Limitations in current capabilities to constrain aerosols adversely impact atmospheric simulations. Typically, aerosol burdens within models are constrained employing satellite aerosol optical properties, which are not available under cloudy conditions. Here we set the first steps to overcome the long-standing limitation that aerosols cannot be constrained using satellite remote sensing under cloudy conditions. We introduce a unique data assimilation method that uses cloud droplet number (N(d)) retrievals to improve predicted below-cloud aerosol mass and number concentrations. The assimilation, which uses an adjoint aerosol activation parameterization, improves agreement with independent N(d) observations and with in situ aerosol measurements below shallow cumulus clouds. The impacts of a single assimilation on aerosol and cloud forecasts extend beyond 24 h. Unlike previous methods, this technique can directly improve predictions of near-surface fine mode aerosols responsible for human health impacts and low-cloud radiative forcing. Better constrained aerosol distributions will help improve health effects studies, atmospheric emissions estimates, and air-quality, weather, and climate predictions.


Asunto(s)
Aerosoles/química , Contaminantes Atmosféricos/química , Atmósfera/análisis , Meteorología/métodos , Modelos Teóricos , Simulación por Computador , Recolección de Datos , Océano Pacífico , Nave Espacial
11.
Sci Total Environ ; 429: 257-65, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22595553

RESUMEN

Chilean law requires the assessment of air pollution control strategies for their costs and benefits. Here we employ an online weather and chemical transport model, WRF-Chem, and a gridded population density map, LANDSCAN, to estimate changes in fine particle pollution exposure, health benefits, and economic valuation for two emission reduction strategies based on increasing the use of compressed natural gas (CNG) in Santiago, Chile. The first scenario, switching to a CNG public transportation system, would reduce urban PM2.5 emissions by 229 t/year. The second scenario would reduce wood burning emissions by 671 t/year, with unique hourly emission reductions distributed from daily heating demand. The CNG bus scenario reduces annual PM2.5 by 0.33 µg/m³ and up to 2 µg/m³ during winter months, while the residential heating scenario reduces annual PM2.5 by 2.07 µg/m³, with peaks exceeding 8 µg/m³ during strong air pollution episodes in winter months. These ambient pollution reductions lead to 36 avoided premature mortalities for the CNG bus scenario, and 229 for the CNG heating scenario. Both policies are shown to be cost-effective ways of reducing air pollution, as they target high-emitting area pollution sources and reduce concentrations over densely populated urban areas as well as less dense areas outside the city limits. Unlike the concentration rollback methods commonly used in public policy analyses, which assume homogeneous reductions across a whole city (including homogeneous population densities), and without accounting for the seasonality of certain emissions, this approach accounts for both seasonality and diurnal emission profiles for both the transportation and residential heating sectors.


Asunto(s)
Calefacción , Gas Natural , Contaminación del Aire , Chile , Humanos , Emisiones de Vehículos
12.
Environ Health Perspect ; 120(1): 68-76, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22049372

RESUMEN

BACKGROUND: Automobile exhaust contains precursors to ozone and fine particulate matter (PM ≤ 2.5 µm in aerodynamic diameter; PM2.5), posing health risks. Dependency on car commuting also reduces physical fitness opportunities. OBJECTIVE: In this study we sought to quantify benefits from reducing automobile usage for short urban and suburban trips. METHODS: We simulated census-tract level changes in hourly pollutant concentrations from the elimination of automobile round trips ≤ 8 km in 11 metropolitan areas in the upper midwestern United States using the Community Multiscale Air Quality (CMAQ) model. Next, we estimated annual changes in health outcomes and monetary costs expected from pollution changes using the U.S. Environmental Protection Agency Benefits Mapping Analysis Program (BenMAP). In addition, we used the World Health Organization Health Economic Assessment Tool (HEAT) to calculate benefits of increased physical activity if 50% of short trips were made by bicycle. RESULTS: We estimate that, by eliminating these short automobile trips, annual average urban PM2.5 would decline by 0.1 µg/m3 and that summer ozone (O3) would increase slightly in cities but decline regionally, resulting in net health benefits of $4.94 billion/year [95% confidence interval (CI): $0.2 billion, $13.5 billion), with 25% of PM2.5 and most O3 benefits to populations outside metropolitan areas. Across the study region of approximately 31.3 million people and 37,000 total square miles, mortality would decline by approximately 1,295 deaths/year (95% CI: 912, 1,636) because of improved air quality and increased exercise. Making 50% of short trips by bicycle would yield savings of approximately $3.8 billion/year from avoided mortality and reduced health care costs (95% CI: $2.7 billion, $5.0 billion]. We estimate that the combined benefits of improved air quality and physical fitness would exceed $8 billion/year. CONCLUSION: Our findings suggest that significant health and economic benefits are possible if bicycling replaces short car trips. Less dependence on automobiles in urban areas would also improve health in downwind rural settings.


Asunto(s)
Contaminación del Aire/análisis , Conducción de Automóvil , Ciclismo , Ejercicio Físico , Emisiones de Vehículos/análisis , Simulación por Computador , Salud Ambiental , Humanos , Medio Oeste de Estados Unidos , Ozono/análisis , Material Particulado/análisis
13.
Environ Sci Technol ; 45(7): 2691-7, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21370856

RESUMEN

Nitrous oxide (N2O) is an important greenhouse gas and a primary cause of stratospheric ozone destruction. Despite its importance, there remain missing sources in the N2O budget. Here we report the formation of atmospheric nitrous oxide from the decomposition of ammonium nitrate via an abiotic mechanism that is favorable in the presence of light, relative humidity and a surface. This source of N2O is not currently accounted for in the global N2O budget. Annual production of N2O from atmospheric aerosols and surface fertilizer application over the continental United States from this abiotic pathway is estimated from results of an annual chemical transport simulation with the Community Multiscale Air Quality model (CMAQ). This pathway is projected to produce 9.3(+0.7/-5.3) Gg N2O annually over North America. N2O production by this mechanism is expected globally from both megacities and agricultural areas and may become more important under future projected changes in anthropogenic emissions.


Asunto(s)
Contaminantes Atmosféricos/síntesis química , Atmósfera/química , Nitratos/química , Óxido Nitroso/síntesis química , Modelos Químicos , Procesos Fotoquímicos , Suelo/química
14.
Environ Sci Technol ; 43(6): 1704-10, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19368160

RESUMEN

This paper presents the results of a study on the effectiveness of smart growth development patterns and vehicle fleet hybridization in reducing mobile source emissions of carbon dioxide (CO2) across 11 major metropolitan regions of the Midwestern U.S. over a 50-year period. Through the integration of a vehicle travel activity modeling framework developed by researchers atthe Oak Ridge National Laboratory with small area population projections, we model mobile source emissions of CO2 associated with alternative land development and technology change scenarios between 2000 and 2050. Our findings suggest that under an aggressive smart growth scenario, growth in emissions expected to occur under a business as usual scenario is reduced by 34%, while the full dissemination of hybrid-electric vehicles throughout the light vehicle fleet is found to offset the expected growth in emissions by 97%. Our results further suggest that high levels of urban densification could achieve reductions in 2050 CO2 emissions equivalent to those attainable through the full dissemination of hybrid-electric vehicle technologies.


Asunto(s)
Contaminación del Aire/prevención & control , Fuentes de Energía Bioeléctrica , Dióxido de Carbono/química , Vehículos a Motor/normas , Remodelación Urbana , Contaminantes Atmosféricos/química , Conservación de los Recursos Naturales/métodos , Efecto Invernadero , Emisiones de Vehículos/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...